Skip to contents

The R package dgpsi provides R interface to Python package dgpsi for deep and linked Gaussian process emulations using stochastic imputation (SI).

Hassle-free Python Setup
You don’t need prior knowledge of Python to start using the package, all you need is a single click in R (see Installation section below) that automatically installs and activates the required Python environment for you!

Features

dgpsi currently has following features:

  • Gaussian process emulations with separable or non-separable squared exponential and Matérn-2.5 kernels.
  • Deep Gaussian process emulations with flexible structures including:
    • multiple layers;
    • multiple GP nodes;
    • separable or non-separable squared exponential and Matérn-2.5 kernels;
    • global input connections;
    • non-Gaussian likelihoods (Poisson, Negative-Binomial, heteroskedastic Gaussian, and Categorical).
  • Linked emulations of feed-forward systems of computer models by linking (D)GP emulators of deterministic individual computer models.
  • Fast Leave-One-Out (LOO) and Out-Of-Sample (OOS) validations for GP, DGP, and linked (D)GP emulators.
  • Multi-core predictions and validations for GP, DGP, and Linked (D)GP emulators.
  • Sequential designs for (D)GP emulators and bundles of (D)GP emulators.
  • Automatic pruning of DGP emulators, both statically and dynamically.
  • Feature Badge Large-scale GP, DGP, and Linked (D)GP emulations.
  • Feature Badge Scalable DGP classification using Stochastic Imputation.
  • Feature Badge Bayesian optimization.

Getting started

Installation

You can install the package from CRAN:

or its development version from GitHub:

devtools::install_github('mingdeyu/dgpsi-R')

After the installation, run

to load the package. To install or activate the required Python environment automatically, you can either run dgpsi::init_py() explicitly or simply call any function from the package. That’s it - the package is ready to use!

Note
After loading dgpsi, the package may take some time to compile and initiate the underlying Python environment the first time a function from dgpsi is executed. Any subsequent function calls won’t require re-compiling or re-activation of the Python environment, and will be faster.

If you experience Python related issues while using the package, please try to reinstall the Python environment:

dgpsi::init_py(reinstall = T)

Or uninstall completely the Python environment:

dgpsi::init_py(uninstall = T)

and then reinstall:

dgpsi::init_py()

Research Notice

This package is part of an ongoing research initiative. For detailed information about the research aspects and guidelines for use, please refer to our Research Notice.